High Precision MEMS Gyroscope

High Performance North Seeking MEMS Gyroscope

ER-MG2-50/100 (0.01-0.02°/hr)
1. 0.01-0.02°/hr bias instability;
2. 0.0025-0.005°/√hr angular random walk;
3. Small size 11x11x2mm.

High Performance North Seeking MEMS Gyroscope

High Precision MEMS Gyroscope

Get Price Now



    Share to:

    Introduction

    ER-MG2-50/100 High Performance North-Seeking MEMS Gyro

    Introduction
    ER-MG2-50/100, a high performance MEMS gyro sensor with 0.01-0.02°/hr bias instability and 0.0025-0.005°/√hr angular
    random walk, is specially designed for north seeking, pointing, initial alignment in logging tools/gyro tools,
    mining/drilling equipment, weapon/UAV launch systems, satellite antenna, target tracking system and so on. Thanks to the
    high performance, ER-MG2-50/100 can also used in high precision attitude measuring, stabilization control, positioning,
    navigating in navigation grade MEMS IMU/INS, land surveying/land mobile mapping system, railway train system, etc. So
    ER-MG2-50/100 is a best, cost effective, robust, reliable, small size, light weight, low power alternative of medium-low
    navigation grade FOG DTG with north seeking, precision attitude measuring , inertial positioning and navigation
    function.
    The ER-MG2-50/100 High Performance North Seeking
    Gyroscope
     is a single-axis MEMS angular rate sensor (gyroscope) capable of measuring angular velocity up to a
    maximum of ±100°/s with digital output compliant to SPI slave mode 3 protocol. Angular rate data is presented as a
    24-bit word.
    The ER-MG2-50/100 is intended for north seeking applications. As an advanced, differential sensor design rejects the
    influence of linear acceleration, enabling ER-MG2-50/100 to operate in exceedingly harsh environments where shock and
    vibration are present.
    The ER-MG2-50/100 is available in a hermetically sealed ceramic LCC surface mount package, and is capable of operating
    at 5V supply and a wide temperature range (−40°C to +85°C).

    Features
    Proven and robust silicon MEMS gyro
    0.01-0.02°/hr bias instability
    0.0025-0.005°/√hr angular random walk
    Digital output (SPI slave)
    5V operation (4.75~5.25V supply)
    Low power consumption (35 mA)
    High shock and vibration rejection
    Hermetically sealed ceramic LCC surface mount package (11x11x2mm)
    Integrated temperature sensor
    RoHS compliant

    Application areas
    North seeking in logging tools/gyro tools
    Pointing, steering and guiding in advanced mining/drilling equipment
    Initial alignment in weapon/UAV launch systems
    Direction pointing and tracking in satellite antenna, target tracking system
    Guidance and navigation in navigation grade MEMS weapon system
    Orientating and positioning in railway train system
    Precision platform attitude measuring and controls
    Precision attitude, position measuring in navigation grade MEMS IMU/INS
    North finding and positioning in land surveying/land mobile mapping system
    Petroleum exploration
    Bridge, tall building, tower, dam monitoring
    Rock and soil monitoring
    Mining

    Specifications of North Seeking Gyroscope

    ParametersER-MG2-50ER-MG2-100Unit
    Range50100deg/s
    Resolution2424bits
    Data rate2k2kHz
    Group delay5020ms
    Bandwidth (-3dB)1212Hz
    Scale factor at 25°C16000080000lsb/deg/s
    Scale factor repeatability (1σ)<50<50ppm
    Scale factor vs temperature (1σ)300300ppm
    Scale factor non-linearity (1σ)<200<200ppm
    Bias instability<0.01<0.02deg/hr
    Bias stability (1σ 10s)<0.05<0.1deg/hr
    Bias stability (1σ 1s)<0.15<0.3deg/hr
    Bias repeatability (1σ)<0.1<0.1deg/hr
    Angular random walk<0.0025<0.005°/√h
    Bias error over temperature (1σ)33deg/hr
    Bias temperature variations, calibrated (1σ)<0.1<0.3deg/hr
    Noise peak to peak±0.002±0.003deg/s
    G-sensitivity<0.5<1°/hr/g
    Vibration rectification error<0.5<1°/hr/g (rms)
    Startup time11s
    Sensor resonant frequency11~13K
    Environment, power and physical
    Shock (charged)1000g, 1ms, half sine wave
    Shock (uncharged)10000g, 1.0ms, half sine wave
    Vibration (operating)12grms, 20Hz to 2KHz random vibration
    Operating temperature-40°C~85°C
    Max storage (survival) temperature-55°C~125°C
    Supply voltage5±0.25V
    Current consumption40mA

    ER-MG2-100 ALLAN VARIANCE
    Capable of measuring angular velocity up to a maximum of ±100°/s with digital output compliant to SPI slave mode 3 protocol.

    ER-MG2-100 Allan Variance

    The above information about north seeking gyroscope is provided by our engineers, if you want to know more, please contact us.


    Application Techniques

    1.Bandwidth test method of MEMS gyroscope

    2.Impact resistance technology of MEMS gyroscope

    3.System error and calibration of MEMS gyroscope

    4.Analysis of drive loop noise of MEMS gyroscope

    5.MEMS Gyroscope: Error Compensation By Allan Variance Method

    6.Comparative analysis of integrated modes of three-axis MEMS gyroscope


    More Products

    High Precision Navigation MEMS Gyroscope
    High Precision Navigation MEMS Gyroscope
    High-temperature North Seeking MEMS Gyro For Gyro Tools(125°C)
    High-temperature North Seeking MEMS Gyro For Gyro Tools(125°C)
    High Performance MEMS Gyroscope
    High Performance MEMS Gyroscope
    High Precision MEMS Gyro
    High Precision MEMS Gyroscope
    3-Axis North-Seeking MEMS Gyro
    2-Axis North-Seeking MEMS Gyro
    3-Axis North-Seeking MEMS Gyro
    3-Axis North-Seeking MEMS Gyro
    Oil and Gas, Mining, Tunnel engineering
    Ask for a Quote



      Menu