High Accuracy MEMS IMU

Introduction

The MEMS can measure the angular rate information of pitch, roll and heading in real time and output it to the users.

A MEMS IMU sensor, gyroscope and accelerometer composed of MEMS gyroscope, MEMS accelerometer and magnetometer constitute the core components of the inertial navigation system. Through the built-in accelerometer and gyroscope, the IMU can measure linear acceleration and rotational angular velocity in three directions, and obtain the attitude, velocity and displacement information of the carriers.

IMU is mostly used in motion control equipment, such as vehicles and robots, and can also be used on occasions that require the use of attitude calculation for accurate displacement, such as inertial navigation equipment for submarines, aircraft, missiles and spacecraft. Compared with other navigation equipment, the inertial navigation system also has the important characteristics of comprehensive information, complete autonomy, strong concealment, real-time continuous information, free from time, geographical restrictions and human factors, which make it suitable for air, water, and underground work normally in the environment.

Specifications

MEMS Gyroscope		
	Х	±2880
Measurement range (°/s)	Y	±200
	Z	±200
Zero-bias (°/s)	X	≤0.05
	Y, Z	≤0. <mark>1</mark>
Non-linearity (%FS)	X	≤0. 1
	X	≤0.05
Resolution (*/s)	Y, Z	≤0.01
Bandwidth (-3dB) (Hz)	х	>50
	Y, Z	>50
Output noise (°/s√Hz)	Х	≤0 <mark>.1</mark> 5
	Y, Z	≤0. <mark>01</mark>
	х	≤0.05 (1σ)
Zero-bias stability (7/S)	Y, Z	≤0.01 (1σ)
Zero bias temperature drift (°/s)	×	≤0.05
Cross coupling (%FS)		≤1

MEMS Accelerometer		
Measurement range (g)	X	±100
	Y	±10
	Z	±10
Zero offset (g)	x	≤ 0 .3
	Y, Z	≤0.005
Non-linearity (%FS)	×	≤2
		≤0.2
	Y, Z	≤0.2
Resolution (mg, rms)	x	≤150
		≤1
	Y, Z	≤1
Bandwidth (-3dB) (Hz)	X	>50
	Y. Z	>50
Output noise (mg√Hz)	×	<20
	^	<1
	Y, Z	<1
Zero-bias stability (g)	×	≤60
	^	≤1
	Y, Z	≤1
Cross coupling (%FS)	27 1000	<1

Magnetometer			
Measurement range (gauss)	X、Y、Z	3	
Zero offset (gauss)	X、Y、Z	≤0.4	
Non-linearity (%FS)	X、Y、Z	≤1	
Bandwidth (-3dB) (Hz)	X、Y、Z	>500	
Output noise (mgauss/√Hz)	X、Y、Z	≤1	
Zero bias temperature drift (mgauss/°C)	X、Y、Z	≤5	
Cross coupling (%FS)	_	≤1	

Interface features		
Interface type	RS-422	
Data format	8 data bits, 1 start bit, 1 stop bit, no parity	
Baud rate	460800bps	
Data updating rate	≥1000Hz	
Operating mode	IMU active upload	
Synchronization pulse		
High level	3.3V±0.2V	
Low level	0V±0.2V	
Trigger mode	Rising edge trigger	
Environmental charact	teristics	
Operating temperature	-40°C∼+70°C	
Storage temperature	-45℃~+80℃	
Vibration (g)	10g, X/Y/Z three directions, each axis 5min	
Impact (g)	2000g, 0.5ms	
Electrical specification	S	
Input voltage	12VDC, ripple <20mV	
Input current	<100mA	
Physical characteristic	s	
Dimension	55*55*29mm	
Weight	<150g	

Interface definition

Connector type: J63A-232-009-161-TH

Wire lead No .:	Signal definition	Details	
1	VCC	VCC	
2	GND	GND	
3	Y	RS422 send +	
4	Z	RS422 send -	
5	A	RS422 receive +	
6	В	RS422 receive -	
7	SYNC	Synchronous pulse reception	