ER-FINS-98 High Performance FOG INS (Replace PHINS)

Introduction

ER-FINS-98 FOG inertial navigation system (Substitute of PHINS) uses triaxial fiber optic gyro to sense angular motion and output digital signal in proportion to the carrier movement angular rate; uses three orthogonal collocation of quartz accelerometer to sense carrier linear acceleration and output proportionable current signal, which is switched to frequency signal though I-F conversion circuit, then input to navigation computer. Computer finishes data receipt of gyro, accelerometer and external GPS, system compensation error calculation, navigation solution and externally sending real-time speed, position, attitude and navigation information affixed the cycle through the monitoring port .

The initial alignment of ER-FINS-98 is divided into two modes: static alignment and double position alignment. The position accuracy of the two position alignment is higher than that of the static alignment.

ER-FINS-98 has high precision and best stability and showed excellent performance in comparison test with PHINS related INS products.

Pure Inertial Mode	
Azimuth accuracy	≤ 0.1°secψ (1σ)
Attitude accuracy	≤ 0.02° (1σ)
Azimuth holding accuracy	0.05°/h
Attitude holding accuracy	0.03°/h
Positioning accuracy (50%CEP)	≤ 2nm/h (10min Static alignment)
Horizontal velocity precision (RMS)	≤ 2m/s (10min Static alignment)
Positioning accuracy (50%CEP)	≤ 1nm/h (Two position alignment, Alignment time is less than 30min)

Specifications

≤ 1m/s (Two position alignment, Horizontal velocity precision (RMS) Alignment time is less than 30min) GNSS Assisted Navigation Mode (External receiver) Azimuth accuracy ≤ 0.1°secψ (1σ) Horizontal attitude accuracy ≤ 0.02° (1σ) ≤0.05° Azimuth holding accuracy Horizontal attitude holding accuracy ≤ 0.01° (1σ) Positioning accuracy ≤ 5m (1σ) Speed accuracy ≤ 0.1 m/s (1 σ) Power and environment Data measurement frequency Maximum 100Hz 23~31V DC Power Supply, Power Supply Nominal Supply Voltage27V Normal temperature steady-state power consumption is less than 17W High and low temperature steady-state Power power consumption is less than 20W Start transient power consumption is less than 50W Working Temp -40°C~+60°C Storage Temp -45°C~+80°C Installment Dimension 180mm×180mm×160mm Quality < 6kg Fiber Optic Gyroscope Time to Prepare ≤15s Bias Stability (100s) ≤0.02°/h (1σ) **Bias repeatability** ≤0.02°/h (1σ) Random Walk Coefficient ≤ 0.005°/√ Hz Scale Factor Non-linearity ≤ 50ppm (1σ) Scale Factor Repeatability ≤ 50ppm (1σ)

Gyro Measurement Range	≥ ±300°/s	
Quartz Accelerometer		
Measurement Range	1-20g~+20g	
The Threshold Value	≤ 5×10-6g	
Scale Factor Repeatability	≤ 3.5×10-5 (1σ)	
Scale Factor Temperature Coefficient	≤ 6×10-5/°C (-40° C~+60° C)	
The Second Order Nonlinear Coefficient	≤ 3×10-5g/g2	
Bias	≤ 6×10-3g	
Bias Repeatability	≤ 2.5×10-5g (1σ)	
Bias Temp Coefficient	≤ 2.5×10-5g/°C(-40° C~+60° C)	
Band width	≥ 800Hz	