Knowledge of Rare Earth Ions

Photon loss in optical fibers prevents long-distance distribution of quantum information on the ground. Quantum repeaters have been proposed as a means of overcoming the problem, but communication distance is still limited because of the complexity of the system. Alternative solutions include transportable quantum memory and quantum-memory-equipped satellites, where long-lived optical quantum memories are key components in realizing global quantum communication. Until recently however, it had not been possible to store optical memories demonstrated for longer than a minute.

A research team led by academician Guo Guangcan of the University of Science and Technology of China, has developed high-performance solid quantum memory based on rare-earth ion-doped crystals that successfully increased the coherent storage of light to an hour, paving way for future large-scale quantum communication based on long-lived solid quantum memories. The results were published in the journals Nature Communications and Nature on April 22 and June 2, respectively.

Share article
Previous News
Application of MEMS Sensors in Aerospace Equipment
Next News
Application of MEMS gyroscope in automobile automatic driving